TOWARD EXACT QUANTUM CHEMISTRY: ACCURATE ELECTRONIC ENERGIES BY STOCHASTIC WAVE FUNCTION SAMPLING AND DETERMINISTIC COUPLED-CLUSTER COMPUTATIONS

Piotr Piecuch, J. Emiliano Deustua, Jun Shen, and I. Magoulas Department of Chemistry and Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

Quantum International Frontiers 2018 Changsha, Hunan Province, China, October 17-21, 2018

MANY THANKS TO PROFESSOR SAMANTHA JENKINS FOR INVITATION

THE ELECTRONIC SCHRÖDINGER EQUATION

$$\hat{H}_{e}\Psi_{\mu}(\mathbf{X};\mathbf{R}) = E_{\mu}(\mathbf{R})\Psi_{\mu}(\mathbf{X};\mathbf{R})$$

$$\hat{H}_{e} = \sum_{i=1}^{N} \hat{z}(\mathbf{x}_{i}) + \sum_{i=1}^{N} \sum_{j=i+1}^{N} \hat{v}(\mathbf{x}_{i},\mathbf{x}_{j})$$

$$\hat{z}(\mathbf{x}_{i}) = -\frac{1}{2}\nabla_{i}^{2} - \sum_{A=1}^{M} \frac{Z_{A}}{R_{Ai}}, \quad \hat{v}(\mathbf{x}_{i},\mathbf{x}_{j}) = \frac{1}{r_{ij}}$$

$$\hat{z}_{i} = \sum_{i=1}^{N} \frac{1}{12} \nabla_{i}^{2} - \sum_{A=1}^{M} \frac{Z_{A}}{R_{Ai}}, \quad \hat{v}(\mathbf{x}_{i},\mathbf{x}_{j}) = \frac{1}{r_{ij}}$$

$$\hat{y}_{\mu} = \sum_{i=1}^{N} \frac{1}{12} \sum_{i=1}^{N} \frac{1}{12} \sum_{i=1}^{N} \frac{1}{12} \sum_{i=1}^{N} \frac{1}{r_{ij}}$$

SOLVING THE ELECTRONIC SCHRÖDINGER EQUATION

 Define a basis set of one-electron functions, e.g., LCAOtype molecular spin-orbitals obtained by solving mean-field (e.g., Hartree-Fock) equations

$$V \equiv \left\{ \varphi_r(\mathbf{x}), r = 1, \dots, \dim V \right\}$$

Exact case : dim $V = \infty$, in practice : dim $V < \infty$

 Construct all possible Slater determinants that can be formed from these one-electron states

$$\Phi_{r_1...r_N}(\mathbf{x}_1,...,\mathbf{x}_N) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \varphi_{r_1}(\mathbf{x}_1) & \cdots & \varphi_{r_1}(\mathbf{x}_N) \\ \vdots & \ddots & \vdots \\ \varphi_{r_N}(\mathbf{x}_1) & \cdots & \varphi_{r_N}(\mathbf{x}_N) \end{vmatrix}$$

SOLVING THE ELECTRONIC SCHRÖDINGER EQUATION

The exact wave function can be written as a linear combination of all Slater determinants

$$\Psi_{\mu}(\mathbf{x}_{1},\ldots,\mathbf{x}_{N}) = \sum_{r_{1}<\cdots< r_{N}} c_{r_{1}\ldots r_{N}}^{\mu} \Phi_{r_{1}\ldots r_{N}}(\mathbf{x}_{1},\ldots,\mathbf{x}_{N})$$
$$= \sum c_{I}^{\mu} \Phi_{I}(\mathbf{x}_{1},\ldots,\mathbf{x}_{N})$$

• Determine the coefficients *c* and the energies E_{μ} by solving the matrix eigenvalue problem:

Ι

$$\mathbf{H}\mathbf{C}^{\mu} = E_{\mu}\mathbf{C}^{\mu}$$

where the matrix elements of the Hamiltonian are

$$H_{IJ} = \left\langle \Phi_{I} \left| \hat{H} \right| \Phi_{J} \right\rangle = \int d\mathbf{x}_{1} \dots d\mathbf{x}_{N} \Phi_{I}^{*}(\mathbf{x}_{1}, \dots, \mathbf{x}_{N}) \hat{H} \Phi_{J}(\mathbf{x}_{1}, \dots, \mathbf{x}_{N})$$

This procedure, referred to as the full configuration interaction approach (FCI), yields the exact solution within a given one-electron basis set

THE PROBLEM WITH FCI

Dimensions of the FCI spaces for many-electron systems

	Number of correlated electrons				
Orbitals	6	8	10	12	
20	$379 imes 10^3$	$5.80 imes10^6$	$52.6 imes10^6$	$300 imes 10^6$	
30	4.56×10^6	172×10^6	4.04×10^9	62.5×10^9	
100	6.73×10^9	3.20×10^{12}	9.94×10^{14}	2.16×10^{17}	

- The high dimensionality of the FCI eigenvalue problem makes this approach inapplicable to systems with more than a few electrons and realistic basis sets
- Alternative approaches are needed in order to study the majority of chemical problems of interest

SINGLE-REFERENCE COUPLED-CLUSTER (CC) THEORY

(F. Coester, 1958; F. Coester and H. Kümmel, 1960; J. Čížek, 1966,1969; J. Čížek and J. Paldus, 1971)

$$|\Psi\rangle = e^{T^{(A)}}|\Phi\rangle, \quad T^{(A)} = \sum_{k=1}^{m_A} T_k$$

SINGLE-REFERENCE COUPLED-CLUSTER (CC) THEORY

(F. Coester, 1958; F. Coester and H. Kümmel, 1960; J. Čížek, 1966,1969; J. Čížek and J. Paldus, 1971)

$$|\Psi\rangle = e^{T^{(A)}}|\Phi\rangle, \quad T^{(A)} = \sum_{k=1}^{m_A} T_k$$

 $\begin{array}{ccc} m_A = N \Rightarrow \text{exact theory (full CI)}, & m_A < N \Rightarrow \text{approximations} \\ m_A = 2 & T = T_1 + T_2 \\ m_A = 3 & T = T_1 + T_2 + T_3 \\ m_A = 4 & T = T_1 + T_2 + T_3 + T_4 \\ \end{array} \begin{array}{c} \text{CCSD} & n_o^2 n_u^4 & (n_o^2 n_u^2) \\ \text{CCSDT} & n_o^3 n_u^5 & (n_o^3 n_u^3) \\ n_o^4 n_u^6 & (n_o^4 n_u^4) \\ \leftarrow \text{iterative } N^6 \\ \end{array}$

Standard CC Equations (J. Čížek, 1966)

We do not minimize

$$E[\Psi] = \langle \Psi | H | \Psi \rangle / \langle \Psi | \Psi \rangle = \langle \Phi | (e^{T^{\dagger}} H e^{T})_{C} | \Phi \rangle,$$

which is a nonterminating series in T. We transform and project the Schrödinger equation.

$$H e^{T} |\Phi\rangle = E_{0} e^{T} |\Phi\rangle$$
$$e^{-T} H e^{T} |\Phi\rangle = E_{0} e^{-T} e^{T} |\Phi\rangle = E_{0} |\Phi\rangle$$
$$\bar{H} |\Phi\rangle = E_{0} |\Phi\rangle, \quad \bar{H} = e^{-T} H e^{T} = (H e^{T})_{C}$$

 \overline{H} is a finite series in T; for pairwise interactions,

 $\bar{H} = H + [H,T] + \frac{1}{2}[[H,T],T]] + \frac{1}{6}[[[H,T],T],T] + \frac{1}{24}[[[[H,T],T],T],T],T]$

$$\begin{aligned} \mathbf{kp\text{-}kh} &\longrightarrow \langle \Phi_{i_{1}i_{2}\dots i_{k}}^{a_{1}a_{2}\dots a_{k}} | \left(H_{N}e^{T^{(A)}} \right)_{C} | \Phi \rangle = 0, \quad k = 1 \dots, m_{A} \\ E_{0} &= \langle \Phi | H | \Phi \rangle + \langle \Phi | \left(H_{N}e^{T^{(A)}} \right)_{C} | \Phi \rangle = \langle \Phi | H | \Phi \rangle + \langle \Phi | \left[H_{N}(T_{1} + T_{2} + \frac{1}{2}T_{1}^{2}) \right]_{C} | \Phi \rangle \end{aligned}$$

ARGUMENTS IN FAVOR OF THE CC THEORY

- Size-extensivity of the resulting approximations (no loss of accuracy occurs when the system is made larger)
- Separability or size consistency if the reference state separates correctly
- **Fastest convergence** toward the exact, full CI, limit

KEY CHALLENGE: How to incorporate T_n and R_n components with n > 2, needed to achieve a quantitative description, without running into prohibitive computational costs of CCSDT, CCSDTQ, and similar schemes? **TRADITIONAL SOLUTION:** Noniterative corrections of the CCSD(T) type, iterative CCSDT-*n* and similar approximations, and their linear-response CCSDR3, CC3, etc. counterparts (replace iterative N^8 and N^{10} steps of CCSDT and CCSDTQ by iterative N^6 plus noniterative N^7 or N^9 , or iterative N^7 or N^9 operations)

[original ideas: K. Kowalski and P. Piecuch, 2000 (ground states); 2001 (excited states)]

Instead of conventional $E_0 = \langle \Phi | H e^{T_1 + T_2 + \dots + T_N} | \Phi \rangle$, use

Instead of conventional
$$E_0 = \langle \Phi | H e^{T_1 + T_2 + \dots + T_N} | \Phi \rangle$$
, use

$$\Lambda[\Psi] = \frac{\langle \Psi | H e^{T^{(A)}} | \Phi \rangle}{\langle \Psi | e^{T^{(A)}} | \Phi \rangle} \longrightarrow \begin{array}{l} \text{MMCC functional} \\ \text{(K.Kowalski and P. Piecuch, 2000)} \\ (T^{(A)} = T_1 + \dots + T_{m_A}) \end{array}$$

[original ideas: K. Kowalski and P. Piecuch, 2000 (ground states); 2001 (excited states)]

Instead of conventional $E_0 = \langle \Phi | H e^{T_1 + T_2 + \dots + T_N} | \Phi \rangle$, use $(T^{(A)} = T_1 + \dots + T_{m_\perp})$ exact, independent of $\Lambda[\Psi_0] = E_0$ truncation m_A defining $T^{(A)}$ $E_{0} = \frac{\left\langle \Psi_{0} \right| \qquad H e^{T^{(A)}} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle}$

$$E_{0} = \frac{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left(H e^{T^{(A)}} \right)_{C} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle}$$

Instead of conventional
$$E_{0} = \langle \Phi | H e^{T_{1}+T_{2}+\dots+T_{N}} | \Phi \rangle$$
, use

$$\Lambda[\Psi] = \frac{\langle \Psi | H e^{T^{(A)}} | \Phi \rangle}{\langle \Psi | e^{T^{(A)}} | \Phi \rangle} \longrightarrow MMCC functional$$
(K.Kowalski and P. Piecuch, 2000)
 $(T^{(A)} = T_{1} + \dots + T_{m_{A}})$

$$\Lambda[\Psi_{0}] = E_{0} \longrightarrow exact, independent of truncation m_{A} defining $T^{(A)}$

$$E_{0} = \frac{\langle \Psi_{0} | e^{T^{(A)}} e^{-T^{(A)}} H e^{T^{(A)}} | \Phi \rangle}{\langle \Psi_{0} | e^{T^{(A)}} | \Phi \rangle} = \frac{\langle \Psi_{0} | e^{T^{(A)}} (e^{-T^{(A)}} H e^{T^{(A)}}) \Phi \rangle}{\langle \Psi_{0} | e^{T^{(A)}} | \Phi \rangle}$$

$$E_{0} = \frac{\langle \Psi_{0} | e^{T^{(A)}} | \Phi \rangle}{\langle \Psi_{0} | e^{T^{(A)}} | \Phi \rangle} = E_{0}^{(A)} + \delta_{0}^{(A)} (He^{T^{(A)}})_{C} | \Phi \rangle$$

$$E_{0} = \frac{\langle \Psi_{0} | e^{T^{(A)}} (He^{T^{(A)}})_{C} | \Phi \rangle}{\langle \Psi_{0} | e^{T^{(A)}} | \Phi \rangle} = E_{0}^{(A)} + \delta_{0}^{(A)} (He^{T^{(A)}})_{C} | \Phi \rangle$$$$

(the ground-state problem: P. Piecuch and M. Włoch, 2005; excited states: P. Piecuch et al., 2006)

(the ground-state problem: P. Piecuch and M. Włoch, 2005; excited states: P. Piecuch et al., 2006)

Instead of

$$\begin{split} \left| \Phi \right\rangle \left\langle \Phi \right| + \sum_{n=1}^{N} \sum_{i_{1} < \dots < i_{n}, a_{1} < \dots < a_{n}} \left| \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right\rangle \left\langle \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right| \\
E_{0} = \Lambda[\Psi_{0}] = \frac{\left\langle \Psi_{0} \right| H e^{T^{(A)}} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} = \frac{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| H e^{T^{(A)}} \right\rangle_{C} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} \end{split}$$

(the ground-state problem: P. Piecuch and M. Włoch, 2005; excited states: P. Piecuch et al., 2006)

Instead of

ad of

$$\begin{aligned} \left| \Phi \right\rangle \left\langle \Phi \right| + \sum_{n=1}^{N} \sum_{i_{1} < \dots < i_{n}, a_{1} < \dots < a_{n}} \left| \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right\rangle \left\langle \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right| \\ E_{0} = \Lambda[\Psi_{0}] = \frac{\left\langle \Psi_{0} \right| H e^{T^{(A)}} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} = \frac{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left(H e^{T^{(A)}} \right)_{C} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} \end{aligned}$$

before exploiting the resolution of identity, introduce the ansatz:

$$\langle \Psi_0 | = \langle \Phi | L_0 e^{-T^{(A)}}, \quad L_0 = \sum_{n=0}^{N} L_{0,n}, \quad \langle \Phi | L_0 | \Phi \rangle = 1$$

M

(the ground-state problem: P. Piecuch and M. Włoch, 2005; excited states: P. Piecuch et al., 2006)

Instead of

ad of

$$\begin{split} \left| \Phi \right\rangle \left\langle \Phi \right| + \sum_{n=1}^{N} \sum_{i_{1} < \dots < i_{n}, a_{1} < \dots < a_{n}} \left| \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right\rangle \left\langle \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right| \right. \\ E_{0} = \Lambda[\Psi_{0}] = \frac{\left\langle \Psi_{0} \right| H e^{T^{(A)}} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} = \frac{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left(H e^{T^{(A)}} \right)_{C} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} \end{split}$$

M

before exploiting the resolution of identity, introduce the ansatz:

$$\left\langle \Psi_{0} \right| = \left\langle \Phi \left| L_{0} e^{-T^{(A)}}, L_{0} \right| = \sum_{n=0}^{N} L_{0,n}, \left\langle \Phi \left| L_{0} \right| \Phi \right\rangle = 1 \right.$$

$$E_{0} = \frac{\left\langle \Phi \left| L_{0} e^{-T^{(A)}} e^{T^{(A)}} (H e^{T^{(A)}})_{C} \right| \Phi \right\rangle}{\left\langle \Phi \left| L_{0} e^{-T^{(A)}} e^{T^{(A)}} \right| \Phi \right\rangle}$$

(the ground-state problem: P. Piecuch and M. Włoch, 2005; excited states: P. Piecuch et al., 2006)

Instead of

ad of

$$\begin{split} \left| \Phi \right\rangle \left\langle \Phi \right| + \sum_{n=1}^{N} \sum_{i_{1} < \dots < i_{n}, a_{1} < \dots < a_{n}} \left| \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right\rangle \left\langle \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right| \right. \\ E_{0} = \Lambda[\Psi_{0}] = \frac{\left\langle \Psi_{0} \right| H e^{T^{(A)}} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} = \frac{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| H e^{T^{(A)}} \right\rangle \left(H e^{T^{(A)}} \right)_{C} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} \end{split}$$

M

before exploiting the resolution of identity, introduce the ansatz:

$$\left\langle \Psi_{0} \right| = \left\langle \Phi \left| L_{0} e^{-T^{(A)}}, L_{0} \right| = \sum_{n=0}^{N} L_{0,n}, \left\langle \Phi \left| L_{0} \right| \Phi \right\rangle = 1 \right.$$

$$E_{0} = \frac{\left\langle \Phi \left| L_{0} e^{-T^{(A)}} e^{T^{(A)}} (H e^{T^{(A)}})_{C} \right| \Phi \right\rangle}{\left\langle \Phi \left| L_{0} e^{-T^{(A)}} e^{T^{(A)}} \right| \Phi \right\rangle}$$

(the ground-state problem: P. Piecuch and M. Włoch, 2005; excited states: P. Piecuch et al., 2006)

Instead of

ad of

$$\begin{split} \left| \Phi \right\rangle \left\langle \Phi \right| + \sum_{n=1}^{N} \sum_{i_{1} < \dots < i_{n}, a_{1} < \dots < a_{n}} \left| \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right\rangle \left\langle \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right| \right. \\ E_{0} = \Lambda[\Psi_{0}] = \frac{\left\langle \Psi_{0} \right| H e^{T^{(A)}} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} = \frac{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left(H e^{T^{(A)}} \right)_{C} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} \end{split}$$

before exploiting the resolution of identity, introduce the ansatz:

$$\left\langle \Psi_{0} \right| = \left\langle \Phi \left| L_{0} e^{-T^{(A)}}, L_{0} \right| = \sum_{n=0}^{N} L_{0,n}, \quad \left\langle \Phi \left| L_{0} \right| \Phi \right\rangle = 1 \right.$$

$$E_{0} = \frac{\left\langle \Phi \left| L_{0} e^{-T^{(A)}} e^{T^{(A)}} (He^{T^{(A)}})_{C} \right| \Phi \right\rangle}{\left\langle \Phi \left| L_{0} e^{-T^{(A)}} e^{T^{(A)}} \right| \Phi \right\rangle} = \left\langle \Phi \left| L_{0} (He^{T^{(A)}})_{C} \right| \Phi \right\rangle \Leftarrow \begin{array}{c} \text{exact, independent of truncation } m_{A} \\ \text{defining } T^{(A)} \\ \text{defining } T^{(A)} \end{array}$$

λ7

(the ground-state problem: P. Piecuch and M. Włoch, 2005; excited states: P. Piecuch et al., 2006)

Instead of

ad of

$$\begin{split} \left| \Phi \right\rangle \left\langle \Phi \right| + \sum_{n=1}^{N} \sum_{i_{1} < \dots < i_{n}, a_{1} < \dots < a_{n}} \left| \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right\rangle \left\langle \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right| \right. \\ E_{0} = \Lambda[\Psi_{0}] = \frac{\left\langle \Psi_{0} \right| H e^{T^{(A)}} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} = \frac{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| H e^{T^{(A)}} \right\rangle_{C} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} \end{split}$$

before exploiting the resolution of identity, introduce the ansatz:

$$\left\langle \Psi_{0} \right| = \left\langle \Phi \left| L_{0} e^{-T^{(A)}}, L_{0} \right| = \sum_{n=0}^{N} L_{0,n}, \left\langle \Phi \left| L_{0} \right| \Phi \right\rangle = 1 \right.$$

$$E_{0} = \frac{\left\langle \Phi \left| L_{0} e^{-T^{(A)}} e^{T^{(A)}} \right| \left(H e^{T^{(A)}} \right)_{C} \right| \Phi \right\rangle}{\left\langle \Phi \left| L_{0} e^{-T^{(A)}} e^{T^{(A)}} \right| \Phi \right\rangle} = \left\langle \Phi \left| L_{0} \right\rangle \left(H e^{T^{(A)}} \right)_{C} \right| \Phi \right\rangle \leftarrow \frac{\text{exact, independent of truncation } m_{A}}{\text{defining } T^{(A)}} \right.$$

$$\left| \Phi \right\rangle \left\langle \Phi \right| + \sum_{n=1}^{N} \sum_{i_{1} < \dots < i_{n}, a_{1} < \dots < a_{n}} \left| \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right\rangle \left\langle \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right| \right.$$

(the ground-state problem: P. Piecuch and M. Włoch, 2005; excited states: P. Piecuch et al., 2006)

Instead of

ad of

$$\begin{aligned} \left| \Phi \right\rangle \left\langle \Phi \right| + \sum_{n=1}^{N} \sum_{i_{1} < \dots < i_{n}, a_{1} < \dots < a_{n}} \left| \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right\rangle \left\langle \Phi_{i_{1} \dots i_{n}}^{a_{1} \dots a_{n}} \right| \right| \\ E_{0} = \Lambda[\Psi_{0}] = \frac{\left\langle \Psi_{0} \right| H e^{T^{(A)}} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} = \frac{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| H e^{T^{(A)}} \right\rangle_{C} \left| \Phi \right\rangle}{\left\langle \Psi_{0} \right| e^{T^{(A)}} \left| \Phi \right\rangle} \end{aligned}$$

before exploiting the resolution of identity, introduce the ansatz:

$$\left\langle \Psi_{0} \right| = \left\langle \Phi \left| L_{0} e^{-T^{(A)}}, L_{0} \right| = \sum_{n=0}^{N} L_{0,n}, \quad \left\langle \Phi \left| L_{0} \right| \Phi \right\rangle = 1 \right.$$

$$E_{0} = \frac{\left\langle \Phi \left| L_{0} e^{-T^{(A)}} e^{T^{(A)}} (He^{T^{(A)}})_{C} \right| \Phi \right\rangle}{\left\langle \Phi \left| L_{0} e^{-T^{(A)}} e^{T^{(A)}} \right| \Phi \right\rangle} = \left\langle \Phi \left| L_{0} \right\rangle \left(He^{T^{(A)}})_{C} \right| \Phi \right\rangle \rightleftharpoons \exp(nn) = \frac{e^{2\pi i n}}{e^{2\pi i n}} e^{2\pi i n} e^{2\pi i n$$

$$E_0^{(\text{CR-CC}(2,3))} = E_0^{(\text{CCSD})} + \delta_0(2,3), \quad \delta_0(2,3) = \sum_{i < j < k, a < b < c} \ell_{0,ijk}^{abc}(2) \mathfrak{M}_{0,abc}^{ijk}(2)$$

$$\mathfrak{M}_{0,abc}^{ijk}(2) = \left\langle \Phi_{ijk}^{abc} \left| \overline{H}^{(\text{CCSD})} \right| \Phi \right\rangle, \quad \overline{H}^{(\text{CCSD})} = e^{-T_1 - T_2} H e^{T_1 + T_2} = \left(H e^{T_1 + T_2} \right)_C$$

$$\ell_{0,ijk}^{abc}(2) = \left\langle \Phi \left| L_0^{(\text{CCSD})} \overline{H}^{(\text{CCSD})} \right| \Phi_{ijk}^{abc} \right\rangle / D_{0,abc}^{ijk}(2), \quad D_{0,abc}^{ijk}(2) = E_0^{(\text{CCSD})} - \left\langle \Phi_{ijk}^{abc} \right| \overline{H}^{(\text{CCSD})} \left| \Phi_{ijk}^{abc} \right\rangle \right\rangle$$

$$E_{0}^{(\text{CR-CC}(2,3))} = E_{0}^{(\text{CCSD})} + \delta_{0}(2,3), \quad \delta_{0}(2,3) = \sum_{i < j < k, a < b < c} \ell_{0,ijk}^{abc}(2) \mathfrak{M}_{0,abc}^{ijk}(2)$$

$$\mathfrak{M}_{0,abc}^{ijk}(2) = \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(\text{CCSD})} \middle| \Phi \right\rangle, \quad \overline{H}^{(\text{CCSD})} = e^{-T_{1} - T_{2}} H e^{T_{1} + T_{2}} = (H e^{T_{1} + T_{2}})_{C}$$

$$\ell_{0,ijk}^{abc}(2) = \left\langle \Phi \middle| L_{0}^{(\text{CCSD})} \overline{H}^{(\text{CCSD})} \middle| \Phi_{ijk}^{abc} \right\rangle / D_{0,abc}^{ijk}(2), \quad D_{0,abc}^{ijk}(2) = E_{0}^{(\text{CCSD})} - \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(\text{CCSD})} \middle| \Phi_{ijk}^{abc} \right\rangle$$

$$E_{0}^{(\text{CR-CC}(2,3))} = E_{0}^{(\text{CCSD})} + \delta_{0}(2,3), \quad \delta_{0}(2,3) = \sum_{i < j < k, a < b < c} \ell_{0,ijk}^{abc}(2) \mathfrak{M}_{0,abc}^{ijk}(2)$$

$$\mathfrak{M}_{0,abc}^{ijk}(2) = \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(\text{CCSD})} \middle| \Phi \right\rangle, \quad \overline{H}^{(\text{CCSD})} = e^{-T_{1} - T_{2}} H e^{T_{1} + T_{2}} = (H e^{T_{1} + T_{2}})_{C}$$

$$\ell_{0,ijk}^{abc}(2) = \left\langle \Phi \middle| L_{0}^{(\text{CCSD})} \overline{H}^{(\text{CCSD})} \middle| \Phi_{ijk}^{abc} \right\rangle / D_{0,abc}^{ijk}(2), \quad D_{0,abc}^{ijk}(2) = E_{0}^{(\text{CCSD})} - \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(\text{CCSD})} \middle| \Phi_{ijk}^{abc} \right\rangle$$

$$E_{0}^{(\text{CR-CC}(2,3))} = E_{0}^{(\text{CCSD})} + \delta_{0}(2,3), \quad \delta_{0}(2,3) = \sum_{i < j < k, a < b < c} \ell_{0,ijk}^{abc}(2) \mathfrak{M}_{0,abc}^{ijk}(2)$$

$$\mathfrak{M}_{0,abc}^{ijk}(2) = \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(\text{CCSD})} \middle| \Phi \right\rangle, \quad \overline{H}^{(\text{CCSD})} = e^{-T_{1} - T_{2}} H e^{T_{1} + T_{2}} = (H e^{T_{1} + T_{2}})_{C}$$

$$\ell_{0,ijk}^{abc}(2) = \left\langle \Phi \middle| L_{0}^{(\text{CCSD})} \overline{H}^{(\text{CCSD})} \middle| \Phi_{ijk}^{abc} \right\rangle / D_{0,abc}^{ijk}(2), \quad D_{0,abc}^{ijk}(2) = E_{0}^{(\text{CCSD})} - \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(\text{CCSD})} \middle| \Phi_{ijk}^{abc} \right\rangle$$

$$E_{0}^{(\text{CR-CC}(2,3))} = E_{0}^{(\text{CCSD})} + \delta_{0}(2,3), \quad \delta_{0}(2,3) = \sum_{i < j < k, a < b < c} \ell_{0,ijk}^{abc}(2) \mathfrak{M}_{0,abc}^{ijk}(2)$$

$$\mathfrak{M}_{0,abc}^{ijk}(2) = \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(\text{CCSD})} \middle| \Phi \right\rangle, \quad \overline{H}^{(\text{CCSD})} = e^{-T_{1} - T_{2}} H e^{T_{1} + T_{2}} = (H e^{T_{1} + T_{2}})_{C}$$

$$\ell_{0,ijk}^{abc}(2) = \left\langle \Phi \middle| L_{0}^{(\text{CCSD})} \overline{H}^{(\text{CCSD})} \middle| \Phi_{ijk}^{abc} \right\rangle / D_{0,abc}^{ijk}(2), \quad D_{0,abc}^{ijk}(2) = E_{0}^{(\text{CCSD})} - \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(\text{CCSD})} \middle| \Phi_{ijk}^{abc} \right\rangle$$

$$E_{0}^{(\text{CR-CC}(2,3))} = E_{0}^{(\text{CCSD})} + \delta_{0}(2,3), \quad \delta_{0}(2,3) = \sum_{i < j < k, a < b < c} \ell_{0,ijk}^{abc}(2) \mathfrak{M}_{0,abc}^{ijk}(2)$$

$$\mathfrak{M}_{0,abc}^{ijk}(2) = \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(\text{CCSD})} \middle| \Phi \right\rangle, \quad \overline{H}^{(\text{CCSD})} = e^{-T_{1} - T_{2}} H e^{T_{1} + T_{2}} = (H e^{T_{1} + T_{2}})_{C}$$

$$\ell_{0,ijk}^{abc}(2) = \left\langle \Phi \middle| L_{0}^{(\text{CCSD})} \overline{H}^{(\text{CCSD})} \middle| \Phi_{ijk}^{abc} \right\rangle / D_{0,abc}^{ijk}(2), \quad D_{0,abc}^{ijk}(2) = E_{0}^{(\text{CCSD})} - \left\langle \Phi_{ijk}^{abc} \middle| \overline{H}^{(\text{CCSD})} \middle| \Phi_{ijk}^{abc} \right\rangle$$

Functional	BDE (with ZPE), kcal/mol, 6-31G(d) / 6- 311++G(d,p)		
BHandHLYP (50% HF)	1.2 / -2.2		
MPW1K (42.8 % HF)	8.9 / 6.0		
M06-2X (54 % HF)	13.5 / 9.2		
MPW1PW91 (25 % HF)	18.1 / 16.1		
B3LYP (20 % HF)	17.8 / 15.9		
B3LYP+D3 (20 % HF)	21.2 / 24.7		
M06 (27 % HF)	27.4 / 26.2		
TPSSh (10 % HF)	24.5 / 23.0		
ω B97X-D (22 % HF)	26.8 / 24.8		
BLYP	25.7 / 24.8		
TPSS	29.1 / 28.1		
MPWPW91	30.3 / 29.7		
M06-L	31.3 / 29.8		
BP86	30.6 / 30.0		
BP86+D3	35.2 / 39.7		
B97-D	<u>35.1 / 34.8</u>		
CIM-CR-CC(2,3)/CCSD	39.8 / 37.8		
Experiment	$37 \pm 3, 36 \pm 4$		

LARGE SYSTEMS (LOCAL CC): CIM-CR-CC(2,3) STUDY OF Co-C BOND DISSOCIATON IN METHYLCOBALAMIN

[P.M. Kozłowski, M. Kumar, P. Piecuch, W. Li, N.P. Bauman, J.A. Hansen, P. Lodowski, and M. Jaworska, *J. Chem. Theory Comput.* 8, 1870 (2012)]

[In GAMESS: CIMTYP = GSECIM]

Structural model: 58 atoms; 234 electrons.

Functional	BDE (with ZPE), kcal/mol, 6-31G(d) / 6- 311++G(d,p)		
BHandHLYP (50% HF)	1.2 / -2.2		
MPW1K (42.8 % HF)	8.9 / 6.0		
M06-2X (54 % HF)	13.5 / 9.2		
MPW1PW91 (25 % HF)	18.1 / 16.1		
B3LYP (20 % HF)	17.8 / 15.9		
B3LYP+D3 (20 % HF)	21.2 / 24.7		
M06 (27 % HF)	27.4 / 26.2		
TPSSh (10 % HF)	24.5 / 23.0		
ωB97X-D (22 % HF)	26.8 / 24.8		
BLYP	25.7 / 24.8		
TPSS	29.1 / 28.1		
MPWPW91	30.3 / 29.7		
M06-L	31.3 / 29.8		
BP86	30.6 / 30.0		
BP86+D3	35.2 / 39.7		
B97-D	35.1 / 34.8		
CIM-CR-CC(2,3)/CCSD	39.8 / 37.8		
Experiment	$37 \pm 3, 36 \pm 4$		
CASSCF(11,10), CASPT2(11,10)	15.1, 53.8		

LARGE SYSTEMS (LOCAL CC): CIM-CR-CC(2,3) STUDY OF Co-C BOND DISSOCIATON IN METHYLCOBALAMIN

[P.M. Kozłowski, M. Kumar, P. Piecuch, W. Li, N.P. Bauman, J.A. Hansen, P. Lodowski, and M. Jaworska, *J. Chem. Theory Comput.* 8, 1870 (2012)]

[In GAMESS: CIMTYP = GSECIM]

Structural model: 58 atoms; 234 electrons.

AUTOMERIZATION OF CYCLOBUTADIENE

Various CC energies (in millihartree) relative to full CCSDT (in hartree), cc-pVDZ basis set

	Reactant	TS	Barrier Height (kcal/mol)
CCSD	26.827	47.979	20.9
CCSD(T)	1.123	14.198	15.8
CR-CC(2,3)	0.848	14.636	16.3
CCSDT	-154.244157	-154.232002	7.6

AUTOMERIZATION OF CYCLOBUTADIENE

Various CC energies (in millihartree) relative to full CCSDT (in hartree), cc-pVDZ basis set

T_1 and T_2		Reactant	TS	Barrier Height (kcal/mol)
decoupled from T_3	CCSD	26.827	47.979	20.9
	CCSD(T)	1.123	14.198	15.8
	CR-CC(2,3)	0.848	14.636	16.3
	CCSDT	-154.244157	-154.232002	7.6

CAPTURING THE COUPLING OF LOWER- AND HIGHER-ORDER CLUSTERS: ACTIVE-SPACE CC APROACHES (CCSDt, CCSDtq, etc.)

[Key concepts: Oliphant and Adamowicz, 1991; Piecuch, Oliphant, and Adamowicz, 1993; Piecuch and Adamowicz, 1994; Piecuch, Kucharski, and Bartlett, 1999; Kowalski and Piecuch, 2000-2001; Gour, Piecuch, and Włoch, 2005-2006; Shen, Ajala, and Piecuch, 2013-2017; cf., also, CASCC work by Adamowicz et al.]

Various CC energies (in millihartree) relative to full CCSDT (in hartree), cc-pVDZ basis set

T_1 and T_2		Reactant	TS	Barrier Height (kcal/mol)
decoupled from T_3	CCSD	26.827	47.979	20.9
	CCSD(T)	1.123	14.198	15.8
	CR-CC(2,3)	0.848	14.636	16.3
	CCSDt	20.786	20.274	7.3
	CCSDT	-154.244157	-154.232002	7.6

Various CC energies (in millihartree) relative to full CCSDT (in hartree), cc-pVDZ basis set

T_1 and T_2		Reactant	TS	Barrier Height (kcal/mol)
decoupled from T_3	CCSD	26.827	47.979	20.9
	CCSD(T)	1.123	14.198	15.8
	CR-CC(2,3)	0.848	14.636	16.3
}	CCSDt	20.786	20.274	7.3
	CCSDT	-154.244157	-154.232002	7.6
t_3 misses some		•	•	
dynamical				
correlations				

$$E_{\mu}^{(P+Q)} = E_{\mu}^{(P)} + \delta_{\mu}(P;Q)$$

$$E_{\mu}^{(P+Q)} = E_{\mu}^{(P)} + \delta_{\mu}(P;Q)$$

CC (\mu = 0) or EOMCC (\mu > 0)
energy obtained in the *P* space $\mathcal{H}^{(P)}$

$$E_{\mu}^{(P+Q)} = E_{\mu}^{(P)} + \delta_{\mu}(P;Q)$$

CC (\mu = 0) or EOMCC (\mu > 0)
energy obtained in the *P* space $\Re^{(P)}$ Correction due to correlation effects
captured by the *Q* space $\Re^{(Q)}$

 $(\mathbf{D} + \mathbf{O})$

$$E_{\mu}^{(P+Q)} = E_{\mu}^{(P)} + \delta_{\mu}(P;Q)$$
CC (\mu = 0) or EOMCC (\mu > 0) Correction due to correlation effects energy obtained in the *P* space $\Re^{(P)}$ captured by the *Q* space $\Re^{(Q)}$

$$\begin{split} E_{\mu}^{(P+Q)} &\equiv E_{\mu}^{(P)} + \delta_{\mu}(P;Q), \qquad \delta_{\mu}(P;Q) = \sum_{\substack{|\Phi_{K}\rangle \in \mathscr{H}^{(Q)} \\ \operatorname{rank}(|\Phi_{K}\rangle) \leq \min(N_{\mu}^{(P)},\Xi^{(Q)})}} \ell_{\mu,K}(P) &= \langle \Phi_{K} | (\bar{H}^{(P)}R_{\mu}^{(P)}) | \Phi \rangle, \qquad \bar{H}^{(P)} = e^{-T^{(P)}} H e^{T^{(P)}} = (He^{T^{(P)}})_{C} \\ \ell_{\mu,K}(P) &= \langle \Phi | L_{\mu}^{(P)} \bar{H}^{(P)} | \Phi_{K} \rangle / D_{\mu,K}(P), \quad D_{\mu,K}(P) = E_{\mu}^{(P)} - \langle \Phi_{K} | \bar{H}^{(P)} | \Phi_{K} \rangle \end{split}$$

(**D**)

 $(\mathbf{D} + \mathbf{O})$

$$E_{\mu}^{(P+Q)} = E_{\mu}^{(P)} + \delta_{\mu}(P;Q)$$
CC (\mu = 0) or EOMCC (\mu > 0) Correction due to correlation effects energy obtained in the *P* space $\mathcal{H}^{(P)}$ captured by the *Q* space $\mathcal{H}^{(Q)}$

$$\begin{split} E_{\mu}^{(P+Q)} &\equiv E_{\mu}^{(P)} + \delta_{\mu}(P;Q), \qquad \delta_{\mu}(P;Q) = \sum_{\substack{|\Phi_{K}\rangle \in \mathscr{H}^{(Q)} \\ \text{moments of CC/EOMCC equations}} \ell_{\mu,K}(P) \underbrace{\mathbb{M}_{\mu,K}(P) = \langle \Phi_{K} | (\bar{H}^{(P)}R_{\mu}^{(P)}) | \Phi \rangle, \quad \bar{H}^{(P)} = e^{-T^{(P)}} H e^{T^{(P)}} = (He^{T^{(P)}})_{C} \\ \underbrace{\mathbb{M}_{\mu,K}(P) = \langle \Phi | L_{\mu}^{(P)} \bar{H}^{(P)} | \Phi_{K} \rangle / D_{\mu,K}(P), \quad D_{\mu,K}(P) = E_{\mu}^{(P)} - \langle \Phi_{K} | \bar{H}^{(P)} | \Phi_{K} \rangle \end{split}$$

$$E_{\mu}^{(P+Q)} = E_{\mu}^{(P)} + \delta_{\mu}(P;Q)$$

CC (\mu = 0) or EOMCC (\mu > 0)
energy obtained in the *P* space $\Re^{(P)}$ Correction due to correlation effects
captured by the *Q* space $\Re^{(Q)}$

[J. Shen and P. Piecuch, Chem. Phys., 2012; J. Chem. Phys., 2012; J. Chem. Theory Comput., 2012]

$$E_{\mu}^{(P+Q)} = E_{\mu}^{(P)} + \delta_{\mu}(P;Q)$$

CC ($\mu = 0$) or EOMCC ($\mu > 0$) Correction due to correlation effects energy obtained in the *P* space $\mathcal{H}^{(P)}$ captured by the *Q* space $\mathcal{H}^{(Q)}$

Examples:

- > *P* space: singly and doubly excited determinants (CCSD)
- \succ Q space: triply excited determinants

[J. Shen and P. Piecuch, Chem. Phys., 2012; J. Chem. Phys., 2012; J. Chem. Theory Comput., 2012]

$$E_{\mu}^{(P+Q)} = E_{\mu}^{(P)} + \delta_{\mu}(P;Q)$$

CC ($\mu = 0$) or EOMCC ($\mu > 0$) Correction due to correlation effects energy obtained in the *P* space $\mathcal{H}^{(P)}$ captured by the *Q* space $\mathcal{H}^{(Q)}$

Examples:

- > *P* space: singly and doubly excited determinants (CCSD)
- \triangleright Q space: triply excited determinants

CR-CC(2,3)

- P space: singly and doubly excited determinants (CCSD)
- \triangleright Q space: triply and quadruply excited determinants

CR-CC(2,4)

[J. Shen and P. Piecuch, Chem. Phys., 2012; J. Chem. Phys., 2012; J. Chem. Theory Comput., 2012]

$$E_{\mu}^{(P+Q)} = E_{\mu}^{(P)} + \delta_{\mu}(P;Q)$$

CC ($\mu = 0$) or EOMCC ($\mu > 0$) Correction due to correlation effects energy obtained in the *P* space $\mathcal{H}^{(P)}$ captured by the *Q* space $\mathcal{H}^{(Q)}$

Examples:

- P space: singles, doubles, and a subset of triples defined via active orbitals, as in CCSDt
- \triangleright Q space: remaining triples <u>not captured</u> by CCSDt

[J. Shen and P. Piecuch, Chem. Phys., 2012; J. Chem. Phys., 2012; J. Chem. Theory Comput., 2012]

$$E_{\mu}^{(P+Q)} = E_{\mu}^{(P)} + \delta_{\mu}(P;Q)$$

CC ($\mu = 0$) or EOMCC ($\mu > 0$) Correction due to correlation effects energy obtained in the *P* space $\mathcal{H}^{(P)}$ captured by the *Q* space $\mathcal{H}^{(Q)}$

Examples:

- P space: singles, doubles, and a subset of triples defined via active orbitals, as in CCSDt
- \triangleright Q space: remaining triples <u>not captured</u> by CCSDt

- P space: singles, doubles, and a subset of triples and quadruples defined via active orbitals, as in CCSDtq
- \succ Q space: remaining triples and quadruples not captured by CCSDtq

CC(t,q;3,4)

[J. Shen and P. Piecuch, J. Chem. Phys. 136, 144104 (2012)]

Various CC energies (in millihartree) relative to full CCSDT (in hartree), cc-pVDZ

	Reactant	TS	
CCSDT	-154.244157	-154.232002	+
CCSD	26.827	47.979	
CCSD(T)	1.123	14.198	
CR-CC(2,3)	0.848	14.636	
CCSDt(I)	20.786	20.274	
CCSD(T)-h(I)	-0.371	-4.548	
CC(t;3)(I)	-0.137	0.071	

Method	cc-pVDZ	2 cc-pVTZ
CCSD	20.9	22.6
$\operatorname{CCSD}(\mathrm{T})$	15.8	18.1
CR-CC(2,3)	16.3	18.6
$\mathrm{CCSDt}(\mathrm{I})$	7.3	9.5
CCSD(T)-h(I)	5.0	6.8
CC(t;3)(I)	7.8	10.0
CCSDT	7.6	10.6
$\Lambda CCSD(T)^{a}$	16.8	19.2
TCCSD ^a	9.4	12.9
$\mathrm{TCCSD}(\mathrm{T})^{\mathrm{a}}$	4.6	7.0
CAS-BCCC4 ^b	7.6	8.7
CASPT2 ^b	3.4	3.8
SUCCSD ^c	7.0	8.7
MkCCSD ^c	7.8	9.6
RMRCCSD ^c	10.4	13.0
$SUCCSD(T)^{c}$	4.8	5.9
$RMRCCSD(T)^{c}$	7.2	9.5
$\rm SUCCSD/mcscf^{c}$	7.2	8.9
$MkCCSD/mcscf^{c}$	7.9	9.7
$\mathrm{RMRCCSD}/\mathrm{mcscf^{c}}$	9.5	11.4
$SUCCSD(T)/mcscf^{c}$	5.7	7.2
$RMRCCSD(T)/mcscf^{c}$	5.9	7.5
$2D-MRCCSD(T)^d$	6.6	
BWCCSD(a.c.) ^e	6.5	7.6
BWCCSD(i.c.) ^e	6.2	7.4
$BWCCSD(T)(a.c.)^{e}$	6.1	7.0
$BWCCSD(T)(i.c.)^{e}$	5.7	6.8
$MkCCSD^{e}$	7.8	9.1
$MkCCSD(T)^{e}$	7.8	8.9
$AQCC/SS-CASSCF^{f}$	7.7	8.9
AQCC/SA-2-CASSCF ^f	7.3	8.4
DIP-EOM-CCSD ^a	8.3	10.7
$SS-EOM-CCSD[+2]^g$	8.3	9.5
Experimental range ^h	1.	6-10
$\Delta ZPVE^{i}$	-	-2.5

[J. Shen and P. Piecuch, J. Chem. Phys. 136, 144104 (2012)]

Various CC energies (in millihartree) relative to full CCSDT (in hartree), cc-pVDZ

	Reactant	TS	
CCSDT	-154.244157	-154.232002	+
CCSD	26.827	47.979	
CCSD(T)	1.123	14.198	
CR-CC(2,3)	0.848	14.636	
CCSDt(I)	20.786	20.274	
CCSD(T)-h(I)	-0.371	-4.548	
CC(t;3)(I)	-0.137	0.071	

Method	cc-pVDZ cc-pVTZ		
CCSD	20.9	22.6	
CCSD(T)	15.8	18.1	
CR-CC(2,3)	16.3	18.6	
$\operatorname{CCSDt}(I)$	7.3	9.5	
CCSD(T)-h(I)	5.0	6.8	
CC(t;3)(I)	7.8	10.0	
CCSDT	7.6	10.6	
$\Lambda CCSD(T)^{a}$	16.8	19.2	
TCCSD ^a	9.4	12.9	
$\mathrm{TCCSD}(\mathrm{T})^{\mathrm{a}}$	4.6	7.0	
CAS-BCCC4 ^b	7.6	8.7	
$CASPT2^{b}$	3.4	3.8	
SUCCSD ^c	7.0	8.7	
MkCCSD ^c	7.8	9.6	
RMRCCSD ^c	10.4	13.0	
$SUCCSD(T)^{c}$	4.8	5.9	
$RMRCCSD(T)^{c}$	7.2	9.5	
SUCCSD/mcscf ^c	7.2	8.9	
MkCCSD/mcscf ^c	7.9	9.7	
$\mathrm{RMRCCSD}/\mathrm{mcscf^{c}}$	9.5	11.4	
$SUCCSD(T)/mcscf^{c}$	5.7	7.2	
$RMRCCSD(T)/mcscf^{c}$	5.9	7.5	
$2D-MRCCSD(T)^d$	6.6		
BWCCSD(a.c.) ^e	6.5	7.6	
$BWCCSD(i.c.)^{e}$	6.2	7.4	
$BWCCSD(T)(a.c.)^{e}$	6.1	7.0	
$BWCCSD(T)(i.c.)^{e}$	5.7	6.8	
MkCCSD ^e	7.8	9.1	
$MkCCSD(T)^{e}$	7.8	8.9	
$AQCC/SS-CASSCF^{f}$	7.7	8.9	
AQCC/SA-2-CASSCF ^f	7.3	8.4	
DIP-EOM-CCSD ^a	8.3	10.7	
$SS-EOM-CCSD[+2]^g$	8.3	9.5	
Experimental range ^h	1.6	6-10	
$\Delta ZPVE^{i}$	-2	2.5	

[J. Shen and P. Piecuch, J. Chem. Phys. 136, 144104 (2012)]

Various CC energies (in millihartree) relative to full CCSDT (in hartree), cc-pVDZ

	Reactant	TS	
CCSDT	-154.244157	-154.232002	•
CCSD	26.827	47.979	
CCSD(T)	1.123	14.198	
CR-CC(2,3)	0.848	14.636	
CCSDt(I)	20.786	20.274	
CCSD(T)-h(I)	-0.371	-4.548	
CC(t;3)(I)	-0.137	0.071	

Method	cc- $pVDZ$	cc- $pVTZ$
CCSD	20.9	22.6
CCSD(T)	15.8	18.1
CR-CC(2,3)	16.3	18.6
$\operatorname{CCSDt}(I)$	7.3	9.5
CCSD(T)-h(I)	5.0	6.8
CC(t;3)(I)	7.8	10.0
CCSDT	7.6	10.6
$\Lambda CCSD(T)^{a}$	16.8	19.2
$\mathrm{TCCSD}^{\mathbf{a}}$	9.4	12.9
$\mathrm{TCCSD}(\mathrm{T})^{\mathrm{a}}$	4.6	7.0
CAS-BCCC4 ^b	7.6	8.7
$CASPT2^{b}$	3.4	3.8
SUCCSD ^c	7.0	8.7
MkCCSD ^c	7.8	9.6
RMRCCSD ^c	10.4	13.0
$SUCCSD(T)^{c}$	4.8	5.9
$RMRCCSD(T)^{c}$	7.2	9.5
$\rm SUCCSD/mcscf^{c}$	7.2	8.9
MkCCSD/mcscf ^c	7.9	9.7
$\mathrm{RMRCCSD}/\mathrm{mcscf^{c}}$	9.5	11.4
$SUCCSD(T)/mcscf^{c}$	5.7	7.2
$RMRCCSD(T)/mcscf^{c}$	5.9	7.5
$2D-MRCCSD(T)^d$	6.6	
BWCCSD(a.c.) ^e	6.5	7.6
BWCCSD(i.c.) ^e	6.2	7.4
$BWCCSD(T)(a.c.)^{e}$	6.1	7.0
$BWCCSD(T)(i.c.)^{e}$	5.7	6.8
MkCCSD ^e	7.8	9.1
$MkCCSD(T)^{e}$	7.8	8.9
AQCC/SS-CASSCF ^f	7.7	8.9
AQCC/SA-2-CASSCF ^f	7.3	8.4
DIP-EOM-CCSD ^a	8.3	10.7
$SS-EOM-CCSD[+2]^g$	8.3	9.5
Experimental range ^h	1.6	6-10
$\Delta ZPVE^{i}$	-2	2.5

[J. Shen and P. Piecuch, J. Chem. Phys. 136, 144104 (2012)]

Various CC energies (in millihartree) relative to full CCSDT (in hartree), cc-pVDZ

	Reactant	TS	
CCSDT	-154.244157	-154.232002	•
CCSD	26.827	47.979	
CCSD(T)	1.123	14.198	
CR-CC(2,3)	0.848	14.636	
CCSDt(I)	20.786	20.274	
CCSD(T)-h(I)	-0.371	-4.548	
CC(t;3)(I)	-0.137	0.071	

Method	cc-pVDZ cc-pVTZ	
CCSD	20.9	22.6
CCSD(T)	15.8	18.1
CR-CC(2,3)	16.3	18.6
$\operatorname{CCSDt}(I)$	7.3	9.5
CCSD(T)-h(I)	5.0	6.8
CC(t;3)(I)	7.8	10.0
CCSDT	7.6	10.6
$\Lambda CCSD(T)^{a}$	16.8	19.2
$\mathrm{TCCSD}^{\mathbf{a}}$	9.4	12.9
$\mathrm{TCCSD}(\mathrm{T})^{\mathrm{a}}$	4.6	7.0
CAS-BCCC4 ^b	7.6	8.7
$CASPT2^{b}$	3.4	3.8
SUCCSD ^c	7.0	8.7
MkCCSD ^c	7.8	9.6
RMRCCSD ^c	10.4	13.0
$SUCCSD(T)^{c}$	4.8	5.9
$RMRCCSD(T)^{c}$	7.2	9.5
$\rm SUCCSD/mcscf^{c}$	7.2	8.9
MkCCSD/mcscf ^c	7.9	9.7
$\rm RMRCCSD/mcscf^{c}$	9.5	11.4
$SUCCSD(T)/mcscf^{c}$	5.7	7.2
$RMRCCSD(T)/mcscf^{c}$	5.9	7.5
$2D-MRCCSD(T)^d$	6.6	
BWCCSD(a.c.) ^e	6.5	7.6
BWCCSD(i.c.) ^e	6.2	7.4
$BWCCSD(T)(a.c.)^{e}$	6.1	7.0
$BWCCSD(T)(i.c.)^{e}$	5.7	6.8
MkCCSD ^e	7.8	9.1
$MkCCSD(T)^{e}$	7.8	8.9
$AQCC/SS-CASSCF^{f}$	7.7	8.9
AQCC/SA-2-CASSCF ^f	7.3	8.4
DIP-EOM-CCSD ^a	8.3	10.7
$SS-EOM-CCSD[+2]^g$	8.3	9.5
Experimental range ^h	1.6	6-10
$\Delta ZPVE^{i}$	-2	2.5

The Conrotatory r						
and Disrotatory		con_TS	dis_TS	g-but	gt_TS	t-but
Isomerization						
Dothwaya of						
Pathways of Discussion [1, 1, 0]						
Bicyclo[1.1.0]-						
butane to Butadiene						[
(enthalpies at 0 K in	OMR3-DMC ^c	40.4(5)	58.6 (5)	-25.2(5)	-22.2(5)	-27.9(5)
kcal/mol)						
E Conrotatory pathway Con TS Con TS	58.6 disroi path	c A	. R. Berner and A	A. Lüchow, <i>J. Ph</i>	ys. Chem. A 114	, 13222 (2010)

The Conrotatory
and Disrotatory
Isomerization
Pathways of
Bicyclo[1.1.0]-
butane to Butadiene
(enthalpies at 0 K in
kcal/mol)

bicyclo[1.1.0]butane (bicbut)

E

Conrotatory		con_TS	dis_TS	g-but	gt_TS	t-but
Asrolatory Prization	CCSD(T) ^a	40.4	21.8	-25.1	-22.3	-28.0
vavs of			-	-		
lo[1.1.0]-						
e to Butadiene						
alpies at 0 K in	OMR3-DMC ^c	40.4(5)	58.6(5)	-25.2(5)	-22.2(5)	-27.9(5)
nol)						
conrotatory pathway 40.4 (40.6±2.5) con_TS 40.4 (40.6±2.5) con_TS 40.4 (40.6±2.5) con_TS (-25.9±0.4)	TS 58.6 disro path -25.2 -22.2	a A c A tatory iway	. Kinal and P. Pie . R. Berner and A g_{t} TS iene trans-buta-1,3 (t-but)	ecuch, <i>J. Phys. C</i> A. Lüchow, <i>J. Ph</i>	⁷ hem. A 111 , 734 bys. Chem. A 114	(2007)

The Conrotat and Disro Isomeriza **Pathways** Bicyclo[1. butane to (enthalpie kcal/mol)

E

le Conrotatory		con_TS	dis_TS	g-but	gt_TS	t-but	
d Disrotatory	CCSD(T) ^a	40.4	21.8	-25.1	-22.3	-28.0	
otherization othways of	CR-CC(2,3) ^a	41.1	66.1	-24.9	-22.1	-27.9	
cyclo[1.1.0]-							
itane to Butadiene							
nthalpies at 0 K in	OMR3-DMC ^c	40.4(5)	58.6(5)	-25.2(5)	-22.2(5)	-27.9(5)	
al/mol)							
* A. Kinal and P. Piecuch, J. Phys. Chem. A 111 , 734 (2007) * A. Kinal and P. Piecuch, J. Phys. Chem. A 114 , 13222 (2010) * A. R. Berner and A. Lüchow, J. Phys. Chem. A 114 , 13222 (2010) * A. R. Berner and A. Lüchow, J. Phys. Chem. A 114 , 13222 (2010) * Generation of the second secon							

The Conrotatory and Disrotatory Isomerization Pathways of Bicyclo[1.1.0]butane to Butadiene (enthalpies at 0 K in kcal/mol)

40.4	21.8	-25.1	-22.3	-28.0
41.1	66.1	-24.9	-22.1	-27.9
40.1	59.0	-27.2	-25.3	-31.1
	40.4 41.1 40.1	40.4 21.8 41.1 66.1 40.1 59.0	40.4 21.8 -25.1 41.1 66.1 -24.9 40.1 59.0 -27.2	40.4 21.8 -25.1 -22.3 41.1 66.1 -24.9 -22.1 40.1 59.0 -27.2 -25.3

^a A. Kinal and P. Piecuch, J. Phys. Chem. A 111, 734 (2007)

^b J. Shen and P. Piecuch, J. Chem. Phys. **136**, 144104 (2012)

^c A. R. Berner and A. Lüchow, J. Phys. Chem. A 114, 13222 (2010)

The Conrotatory and Disrotatory Isomerization Pathways of Bicyclo[1.1.0]butane to Butadiene (enthalpies at 0 K in kcal/mol)

	con_TS	dis_TS	g-but	gt_TS	t-but
CCSD(T) ^a	40.4	21.8	-25.1	-22.3	-28.0
CR-CC(2,3) ^a	41.1	66.1	-24.9	-22.1	-27.9
CCSDt ^b	40.1	59.0	-27.2	-25.3	-31.1
CC(t;3) ^b	40.2	60.1	-25.3	-22.6	-28.3
OMR3-DMC ^c	40.4(5)	58.6(5)	-25.2(5)	-22.2(5)	-27.9(5)

^a A. Kinal and P. Piecuch, J. Phys. Chem. A **111**, 734 (2007)

^b J. Shen and P. Piecuch, J. Chem. Phys. **136**, 144104 (2012)

^c A. R. Berner and A. Lüchow, J. Phys. Chem. A 114, 13222 (2010)

Is there an automated way of determining *P* spaces reflecting on the nature of states being calculated, while using corrections δ_μ(*P*;*Q*) to capture the remaining correlations of interest?

- Is there an automated way of determining *P* spaces reflecting on the nature of states being calculated, while using corrections δ_μ(*P*;*Q*) to capture the remaining correlations of interest?
- Can this be done such that the resulting electronic energies rapidly converge to their high-level (CCSDT, CCSDTQ, etc.) parents, even when higher-than-two-body clusters become large, at the small fraction of the computational effort and with an ease of a black-box computation?

- Is there an automated way of determining *P* spaces reflecting on the nature of states being calculated, while using corrections δ_μ(*P*;*Q*) to capture the remaining correlations of interest?
- Can this be done such that the resulting electronic energies rapidly converge to their high-level (CCSDT, CCSDTQ, etc.) parents, even when higher-than-two-body clusters become large, at the small fraction of the computational effort and with an ease of a black-box computation?

Both questions have positive answers if we fuse DETERMINISTIC CC(*P*;*Q*) METHODOLOGY with

STOCHASTIC CI AND CC MONTE CARLO.

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]

CI QUANTUM MONTE CARLO (CIQMC)

THE JOURNAL OF CHEMICAL PHYSICS 131, 054106 (2009)

Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space

George H. Booth,¹ Alex J. W. Thom,^{1,2} and Ali Alavi^{1,a)} ¹Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom ²Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA

(Received 15 May 2009; accepted 13 July 2009; published online 4 August 2009)

CC MONTE CARLO (CCMC)

PRL 105, 263004 (2010)

PHYSICAL REVIEW LETTERS

week ending 31 DECEMBER 2010

Stochastic Coupled Cluster Theory

Alex J. W. Thom*

Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom and University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom (Received 14 September 2010; published 28 December 2010)

$$\lim_{\tau \to \infty} |\Psi(\tau)\rangle = \lim_{\tau \to \infty} e^{-(H-S)\tau} |\Phi_0\rangle = \begin{cases} c_0 |\Psi_0\rangle & \text{for } S = E_0 \\ \infty & \text{for } S > E_0 \\ 0 & \text{for } S < E_0 \end{cases}$$

$$\left|\Psi(\tau)\right\rangle = c_0(\tau) \left|\Phi_0\right\rangle + \sum_K c_K(\tau) \left|\Phi_K\right\rangle$$

$$\frac{\partial c_{K}(\tau)}{\partial \tau} = -(H_{KK} - S)c_{K}(\tau) - \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$$

If
$$S \to E_0$$
, $\lim_{\tau \to \infty} \frac{\partial c_K(\tau)}{\partial \tau} = 0$ and we obtain $\sum_L H_{KL} c_L(\infty) = E_0 c_K(\infty)$

WALKER POPULATION DYNAMICS

$$c_{K}(\tau) \sim N_{K} = \sum_{\alpha} s_{\alpha} \delta_{K,K_{\alpha}}, \ s_{\alpha} = \pm 1$$
$$\frac{\partial c_{K}(\tau)}{\partial \tau} = -(H_{KK} - S)c_{K}(\tau) - \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$$

birth and death

spawning

 $c_{K}(\tau + \Delta \tau) = [1 - (H_{KK} - S)\Delta \tau]c_{K}(\tau) \quad c_{K}(\tau + \Delta \tau) = c_{K}(\tau) - \Delta \tau \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$

1. Place a certain number of walkers on a reference determinant (or determinants) and set S at some value above E_0 .

2. In every time step, attempt

- i. spawning: spawn walkers at different determinants.
- ii. birth or death: create or destroy walkers at a given determinant.
- iii. annihilation: eliminate pairs of oppositely signed walkers at a given determinant.

3. Once a critical (or sufficiently large) number of walkers is reached, start applying energy shifts in S to stabilize walker population and reach convergence.

$$\begin{split} |\Phi_{0}\rangle^{(1)} & |\Phi_{S_{1}}\rangle & |\Phi_{D_{1}}\rangle & |\Phi_{T_{1}}\rangle & |\Phi_{Q_{1}}\rangle & |\Phi_{P_{1}}\rangle & \dots \\ & |\Phi_{S_{2}}\rangle & |\Phi_{D_{2}}\rangle & |\Phi_{T_{2}}\rangle & |\Phi_{Q_{2}}\rangle & |\Phi_{P_{2}}\rangle & \dots \\ & |\Phi_{S_{3}}\rangle & |\Phi_{D_{3}}\rangle & |\Phi_{T_{3}}\rangle & |\Phi_{Q_{3}}\rangle & |\Phi_{P_{3}}\rangle & \dots \\ & |\Phi_{S_{4}}\rangle & |\Phi_{D_{4}}\rangle & |\Phi_{T_{4}}\rangle & |\Phi_{Q_{4}}\rangle & |\Phi_{P_{4}}\rangle & \dots \\ & |\Phi_{S_{5}}\rangle & |\Phi_{D_{5}}\rangle & |\Phi_{T_{5}}\rangle & |\Phi_{Q_{5}}\rangle & |\Phi_{P_{5}}\rangle & \dots \\ & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end{split}$$

$$\begin{split} |\Phi_{0}\rangle^{(1)} & |\Phi_{S_{1}}\rangle & |\Phi_{D_{1}}\rangle & |\Phi_{T_{1}}\rangle & |\Phi_{Q_{1}}\rangle & |\Phi_{P_{1}}\rangle & \dots \\ & |\Phi_{S_{2}}\rangle & |\Phi_{D_{2}}\rangle & |\Phi_{T_{2}}\rangle & |\Phi_{Q_{2}}\rangle & |\Phi_{P_{2}}\rangle & \dots \\ & |\Phi_{S_{3}}\rangle & |\Phi_{D_{3}}\rangle & |\Phi_{T_{3}}\rangle & |\Phi_{Q_{3}}\rangle & |\Phi_{P_{3}}\rangle & \dots \\ & |\Phi_{S_{4}}\rangle & |\Phi_{D_{4}}\rangle & |\Phi_{T_{4}}\rangle & |\Phi_{Q_{4}}\rangle & |\Phi_{P_{4}}\rangle & \dots \\ & |\Phi_{S_{5}}\rangle^{(-1)} & |\Phi_{D_{5}}\rangle & |\Phi_{T_{5}}\rangle & |\Phi_{Q_{5}}\rangle & |\Phi_{P_{5}}\rangle & \dots \\ & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end{split}$$

$$\begin{split} |\Phi_{0}\rangle^{(2)} & |\Phi_{S_{1}}\rangle & |\Phi_{D_{1}}\rangle & |\Phi_{T_{1}}\rangle & |\Phi_{Q_{1}}\rangle & |\Phi_{P_{1}}\rangle & \dots \\ & |\Phi_{S_{2}}\rangle & |\Phi_{D_{2}}\rangle & |\Phi_{T_{2}}\rangle & |\Phi_{Q_{2}}\rangle & |\Phi_{P_{2}}\rangle & \dots \\ & |\Phi_{S_{3}}\rangle & |\Phi_{D_{3}}\rangle & |\Phi_{T_{3}}\rangle & |\Phi_{Q_{3}}\rangle & |\Phi_{P_{3}}\rangle & \dots \\ & |\Phi_{S_{4}}\rangle & |\Phi_{D_{4}}\rangle & |\Phi_{T_{4}}\rangle & |\Phi_{Q_{4}}\rangle & |\Phi_{P_{4}}\rangle & \dots \\ & |\Phi_{S_{5}}\rangle & |\Phi_{D_{5}}\rangle^{(-1)} & |\Phi_{T_{5}}\rangle & |\Phi_{Q_{5}}\rangle & |\Phi_{P_{5}}\rangle & \dots \\ & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end{split}$$
$$\begin{split} |\Phi_{0}\rangle^{(1)} & |\Phi_{S_{1}}\rangle & |\Phi_{D_{1}}\rangle & |\Phi_{T_{1}}\rangle & |\Phi_{Q_{1}}\rangle & |\Phi_{P_{1}}\rangle & \dots \\ & |\Phi_{S_{2}}\rangle & |\Phi_{D_{2}}\rangle & |\Phi_{T_{2}}\rangle & |\Phi_{Q_{2}}\rangle & |\Phi_{P_{2}}\rangle & \dots \\ & |\Phi_{S_{3}}\rangle & |\Phi_{D_{3}}\rangle & |\Phi_{T_{3}}\rangle & |\Phi_{Q_{3}}\rangle & |\Phi_{P_{3}}\rangle & \dots \\ & |\Phi_{S_{4}}\rangle & |\Phi_{D_{4}}\rangle & |\Phi_{T_{4}}\rangle & |\Phi_{Q_{4}}\rangle & |\Phi_{P_{4}}\rangle & \dots \\ & |\Phi_{S_{5}}\rangle & |\Phi_{D_{5}}\rangle^{(-1)} & |\Phi_{T_{5}}\rangle & |\Phi_{Q_{5}}\rangle & |\Phi_{P_{5}}\rangle & \dots \\ & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end{split}$$

$$\begin{split} |\Phi_{0}\rangle^{(1)} & |\Phi_{S_{1}}\rangle & |\Phi_{D_{1}}\rangle & |\Phi_{T_{1}}\rangle^{(2)} & |\Phi_{Q_{1}}\rangle & |\Phi_{P_{1}}\rangle & \dots \\ & |\Phi_{S_{2}}\rangle & |\Phi_{D_{2}}\rangle & |\Phi_{T_{2}}\rangle & |\Phi_{Q_{2}}\rangle & |\Phi_{P_{2}}\rangle & \dots \\ & |\Phi_{S_{3}}\rangle & |\Phi_{D_{3}}\rangle & |\Phi_{T_{3}}\rangle & |\Phi_{Q_{3}}\rangle & |\Phi_{P_{3}}\rangle & \dots \\ & |\Phi_{S_{4}}\rangle & |\Phi_{D_{4}}\rangle & |\Phi_{T_{4}}\rangle & |\Phi_{Q_{4}}\rangle & |\Phi_{P_{4}}\rangle & \dots \\ & |\Phi_{S_{5}}\rangle & |\Phi_{D_{5}}\rangle^{(-2)} & |\Phi_{T_{5}}\rangle & |\Phi_{Q_{5}}\rangle & |\Phi_{P_{5}}\rangle & \dots \\ & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \\ \end{split}$$

$$\begin{aligned} c_{K}(\tau) \sim N_{K} &= \sum_{\alpha} s_{\alpha} \delta_{K,K_{\alpha}}, \ s_{\alpha} = \pm 1 \\ &\frac{\partial c_{K}(\tau)}{\partial \tau} = -(H_{KK} - S)c_{K}(\tau) - \sum_{L(\neq K)} H_{KL}c_{L}(\tau) \\ &\text{birth and death} \\ c_{K}(\tau + \Delta \tau) = [1 - (H_{KK} - S)\Delta \tau]c_{K}(\tau) \quad c_{K}(\tau + \Delta \tau) = c_{K}(\tau) - \Delta \tau \sum_{L(\neq K)} H_{KL}c_{L}(\tau) \end{aligned}$$

$$c_{K}(\tau) \sim N_{K} = \sum_{\alpha} s_{\alpha} \delta_{K,K_{\alpha}}, \ s_{\alpha} = \pm 1$$

$$\frac{\partial c_{K}(\tau)}{\partial \tau} = -(H_{KK} - S)c_{K}(\tau) - \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$$
birth and death
$$c_{K}(\tau + \Delta \tau) = [1 - (H_{KK} - S)\Delta \tau]c_{K}(\tau) \quad c_{K}(\tau + \Delta \tau) = c_{K}(\tau) - \Delta \tau \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$$

$$c_{K}(\tau) \sim N_{K} = \sum_{\alpha} s_{\alpha} \delta_{K,K_{\alpha}}, \ s_{\alpha} = \pm 1$$

$$\frac{\partial c_{K}(\tau)}{\partial \tau} = -(H_{KK} - S)c_{K}(\tau) - \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$$
birth and death
$$c_{K}(\tau + \Delta \tau) = [1 - (H_{KK} - S)\Delta \tau]c_{K}(\tau) \quad c_{K}(\tau + \Delta \tau) = c_{K}(\tau) - \Delta \tau \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$$

$$c_{K}(\tau) \sim N_{K} = \sum_{\alpha} s_{\alpha} \delta_{K,K_{\alpha}}, \ s_{\alpha} = \pm 1$$

$$\frac{\partial c_{K}(\tau)}{\partial \tau} = -(H_{KK} - S)c_{K}(\tau) - \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$$
birth and death
$$c_{K}(\tau + \Delta \tau) = [1 - (H_{KK} - S)\Delta \tau]c_{K}(\tau) \quad c_{K}(\tau + \Delta \tau) = c_{K}(\tau) - \Delta \tau \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$$

$$c_{K}(\tau) \sim N_{K} = \sum_{\alpha} s_{\alpha} \delta_{K,K_{\alpha}}, \ s_{\alpha} = \pm 1$$

$$\frac{\partial c_{K}(\tau)}{\partial \tau} = -(H_{KK} - S)c_{K}(\tau) - \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$$
birth and death
$$c_{K}(\tau + \Delta \tau) = [1 - (H_{KK} - S)\Delta \tau]c_{K}(\tau) \quad c_{K}(\tau + \Delta \tau) = c_{K}(\tau) - \Delta \tau \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$$

WALKER POPULATION DYNAMICS

$$c_{K}(\tau) \sim N_{K} = \sum_{\alpha} s_{\alpha} \delta_{K,K_{\alpha}}, \ s_{\alpha} = \pm 1$$

$$\frac{\partial c_{K}(\tau)}{\partial \tau} = -(H_{KK} - S)c_{K}(\tau) - \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$$
birth and death
$$c_{K}(\tau + \Delta \tau) = [1 - (H_{KK} - S)\Delta \tau]c_{K}(\tau) \quad c_{K}(\tau + \Delta \tau) = c_{K}(\tau) - \Delta \tau \sum_{L(\neq K)} H_{KL}c_{L}(\tau)$$

CCMC (CCSDT-MC, CCSDTQ-MC, etc.)

In CCMC, instead of sampling determinants by walkers, one samples the space of excitation amplitudes (amplitudes of "excitors") by excitor particles ("excips").

To accelerate convergence, one can use the initiator CIQMC (*i*-CIQMC) and CCMC (*i*-CCMC) approaches, where only those determinants or excitors that acquire a walker/excip population exceeding a preset value n_a are allowed to spawn new walkers onto empty determinants/excitors. One can start *i*-CIQMC and *i*-CCMC simulations by placing a certain, sufficiently large, number of walkers/excips on the reference determinant (in our case, the RHF state).

THE JOURNAL OF CHEMICAL PHYSICS 132, 041103 (2010)

Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo

Deidre Cleland, George H. Booth, and Ali Alavi^{a)} Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

(Received 11 December 2009; accepted 11 January 2010; published online 28 January 2010)

THE JOURNAL OF CHEMICAL PHYSICS 144, 084108 (2016)

Developments in stochastic coupled cluster theory: The initiator approximation and application to the uniform electron gas

James S. Spencer¹ and Alex J. W. Thom^{2,a)} ¹Department of Physics and Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom ²University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom and Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom

(Received 17 November 2015; accepted 4 February 2016; published online 24 February 2016)

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]

1. Start a CIQMC (e.g., *i*-CIQMC) or CCMC (e.g., *i*-CCMC) propagation by placing a certain number of walkers or excips on the reference determinant.

1. Start a CIQMC (e.g., *i*-CIQMC) or CCMC (e.g., *i*-CCMC) propagation by placing a certain number of walkers or excips on the reference determinant.

2. Extract a list of the most important determinants or cluster amplitude types relevant to the CC theory of interest (triples for CCSDT; triples and quadruples for CCSDTQ, etc.) from the CIQMC or CCMC propagation at a given time τ to define the *P* space for CC(*P*) calculations as follows:

- if the target approach is CCSDT, the *P* space is defined as all singles, all doubles, and a subset of triples having at least n_P (e.g., one) positive or negative walkers/excips on them.
- if the target approach is CCSDTQ, the *P* space is defined as all singles, all doubles, and a subset of triples and quadruples having at least n_P (e.g., one) positive or negative walkers/excips on them, etc.

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]

Developing a Stochas

1414131514121614151614151516131615141515181719151614151515161719141616171919202161615151771416161920617171141314161613171415161618 $\frac{16161}{1717} + \frac{18181}{1819} + \frac{1919}{1919} + \frac{1920}{2020} + \frac{1020}{2020} + \frac{1020}{20$ 10 10 10 10 10 10 10 10 9 9 15 13 12 15 12 12 14 12 15 14 12 14 13 16 14 14 11 13 14 14 13 16 18 13 13 15 15 16 14 17 14 19 12 14 12 14 16 16 13 15 15 15 14 14 14 13 12 13 12 15 12 12 12 12 13 14 13 15 15 11 8 10 8 10 11 11 11 13 11

Developing a Stochas

d P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]

1. Start a CIQMC (e.g., *i*-CIQMC) or CCMC (e.g., *i*-CCMC) propagation by placing a certain number of walkers or excips on the reference determinant.

2. Extract a list of the most important determinants or cluster amplitude types relevant to the CC theory of interest (triples for CCSDT; triples and quadruples for CCSDTQ, etc.) from the CIQMC or CCMC propagation at a given time τ to define the *P* space for CC(*P*) calculations as follows:

- if the target approach is CCSDT, the *P* space is defined as all singles, all doubles, and a subset of triples having at least n_P (e.g., one) positive or negative walkers/excips on them.
- if the target approach is CCSDTQ, the *P* space is defined as all singles, all doubles, and a subset of triples and quadruples having at least n_P (e.g., one) positive or negative walkers/excips on them, etc.

1. Start a CIQMC (e.g., *i*-CIQMC) or CCMC (e.g., *i*-CCMC) propagation by placing a certain number of walkers or excips on the reference determinant.

2. Extract a list of the most important determinants or cluster amplitude types relevant to the CC theory of interest (triples for CCSDT; triples and quadruples for CCSDTQ, etc.) from the CIQMC or CCMC propagation at a given time τ to define the *P* space for CC(*P*) calculations as follows:

- if the target approach is CCSDT, the *P* space is defined as all singles, all doubles, and a subset of triples having at least $n_{\rm P}$ (e.g., one) positive or negative walkers/excips on them.
- if the target approach is CCSDTQ, the *P* space is defined as all singles, all doubles, and a subset of triples and quadruples having at least $n_{\rm P}$ (e.g., one) positive or negative walkers/excips on them, etc.
- 3. Solve the CC(*P*) equations.
- if the target approach is CCSDT, use $T^{(P)} = T_1 + T_2 + T_3^{(MC)}$ if the target approach is CCSDTQ, use $T^{(P)} = T_1 + T_2 + T_3^{(MC)} + T_4^{(MC)}$ etc.

RECOVERING CCSDT ENERGETICS FOR F₂/cc-pVDZ MONTE CARLO APPROACH = *i*-FCIQMC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]

RECOVERING CCSDT ENERGETICS FOR F₂/cc-pVDZ MONTE CARLO APPROACH = *i*-FCIQMC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]

1. Start a CIQMC (e.g., *i*-CIQMC) or CCMC (e.g., *i*-CCMC) propagation by placing a certain number of walkers or excips on the reference determinant.

2. Extract a list of the most important determinants or cluster amplitude types relevant to the CC theory of interest (triples for CCSDT; triples and quadruples for CCSDTQ, etc.) from the CIQMC or CCMC propagation at a given time τ to define the *P* space for CC(*P*) calculations as follows:

- if the target approach is CCSDT, the *P* space is defined as all singles, all doubles, and a subset of triples having at least $n_{\rm P}$ (e.g., one) positive or negative walkers/excips on them.
- if the target approach is CCSDTQ, the *P* space is defined as all singles, all doubles, and a subset of triples and quadruples having at least $n_{\rm P}$ (e.g., one) positive or negative walkers/excips on them, etc.
- 3. Solve the CC(*P*) equations.
- if the target approach is CCSDT, use $T^{(P)} = T_1 + T_2 + T_3^{(MC)}$ if the target approach is CCSDTQ, use $T^{(P)} = T_1 + T_2 + T_3^{(MC)} + T_4^{(MC)}$ etc.

1. Start a CIQMC (e.g., *i*-CIQMC) or CCMC (e.g., *i*-CCMC) propagation by placing a certain number of walkers or excips on the reference determinant.

2. Extract a list of the most important determinants or cluster amplitude types relevant to the CC theory of interest (triples for CCSDT; triples and quadruples for CCSDTQ, etc.) from the CIQMC or CCMC propagation at a given time τ to define the **P** space for CC(**P**) calculations as follows:

- if the target approach is CCSDT, the *P* space is defined as all singles, all doubles, and a subset of triples having at least $n_{\rm P}$ (e.g., one) positive or negative walkers/excips on them.
- if the target approach is CCSDTQ, the *P* space is defined as all singles, all doubles, and a subset of triples and quadruples having at least $n_{\rm P}$ (e.g., one) positive or negative walkers/excips on them, etc.
- 3. Solve the CC(*P*) equations.
- if the target approach is CCSDT, use $T^{(P)} = T_1 + T_2 + T_3^{(MC)}$ if the target approach is CCSDTQ, use $T^{(P)} = T_1 + T_2 + T_3^{(MC)} + T_4^{(MC)}$ etc.

4. Correct the CC(P) energy for the remaining triples (if the target approach is CCSDT), triples and quadruples (if the target approach is CCSDTQ), etc. using the non-iterative CC(P;Q) correction $\delta(P;Q)$.

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]

RECOVERING CCSDT ENERGETICS FOR F₂/cc-pVDZ MONTE CARLO APPROACH = *i*-FCIQMC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]
RECOVERING CCSDT ENERGETICS FOR F₂/cc-pVDZ MONTE CARLO APPROACH = *i*-FCIQMC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]

RECOVERING CCSDT ENERGETICS FOR F₂/cc-pVDZ MONTE CARLO APPROACH = *i*-CISDTQ-MC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

[J.E. Deustua, J. Shen, and P. Piecuch, in preparation]

RECOVERING CCSDT ENERGETICS FOR F₂/cc-pVDZ MONTE CARLO APPROACH = *i*-CISDT-MC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

[J.E. Deustua, J. Shen, and P. Piecuch, in preparation]

RECOVERING CCSDT ENERGETICS FOR F₂/cc-pVDZ MONTE CARLO APPROACH = *i*-CCSDT-MC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]

RECOVERING CCSDT ENERGETICS FOR F₂/cc-pVDZ MONTE CARLO APPROACH = *i*-FCIQMC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

$$R = 2 R_{e}$$

Errors relative to CCSDT

MC Iter.	% of	CC (<i>P</i>)	$\begin{array}{c c} CC(P) \\ mE_{h} \end{array} & \begin{array}{c} CC(P;Q)_{MP} \\ (mE_{h}) \end{array} & \begin{array}{c} CC(P;Q)_{EN} \\ (mE_{h}) \end{array} \end{array}$	$\mathrm{CC}(P;Q)_{\mathrm{EN}}$	Wall Time (s)		
	Triples in <i>P</i> space	(mE _h)		(mE _h)	MC	CC(<i>P</i> ; <i>Q</i>)	Total
0	0	45.638 CCSD	6.357 CCSD(2) _T	1.862 CR-CC(2,3)	0	2	2
10,000	4	12.199	1.887	0.915	3	2	5
20,000	10	4.127	0.596	0.279	10	5	15
30,000	21	0.802	0.067	-0.009	28	13	41
40,000	35	0.456	0.036	-0.007	66	31	97
œ	100		-199.058201 E _l	1		208	

Errors relative to CCSDT					
CCSD:	45.638 mE _h				
CCSD(T):	–23.596 mE _h				

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]

RECOVERING CCSDT ENERGETICS FOR F₂/cc-pVDZ MONTE CARLO APPROACH = *i*-CISDT-MC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

$$R = 2 R_{e}$$

Errors relative to CCSDT

MC Iter.	% of	% of riples in P spaceCC(P) (mE_h)CC(P;Q)_{MP} (mE_h)CC(P;Q)_{EN} (mE_h)	$\mathrm{CC}(P;Q)_{\mathrm{MP}}$	$\mathrm{CC}(P;Q)_{\mathrm{EN}}$	Wall Time (s)		
	Triples in <i>P</i> space		(mE _h)	MC	CC(<i>P</i> ; <i>Q</i>)	Total	
0	0	45.638 CCSD	6.357 CCSD(2) _T	1.862 CR-CC(2,3)	0	2	2
10,000	3	12.687	2.069	0.978	3	2	5
20,000	9	3.672	0.583	0.280	9	3	12
30,000	17	1.393	0.154	0.030	17	8	25
40,000	28	0.627	0.053	-0.005	32	16	48
œ	100		-199.058201 E _l	1		208	

Errors relative to CCSDT					
CCSD:	45.638 mE _h				
CCSD(T):	–23.596 mE _h				

[J.E. Deustua, J. Shen, and P. Piecuch, in preparation]

RECOVERING CCSDT ENERGETICS FOR LARGER BASIS SETS MONTE CARLO APPROACH = *i*-FCIQMC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]

RECOVERING CCSDT ENERGETICS FOR F₂/aug-cc-pVTZ MONTE CARLO APPROACH = *i*-FCIQMC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

$$R = 2 R_{e}$$

Errors relative to CCSDT

MC Iter.	% of Triples in <i>P</i> space	CC(P) (mE _h)	$\frac{\text{CC}(P;Q)_{\text{MP}}}{(\text{mE}_{h})}$	$CC(P;Q)_{EN}$ (mE _h)	Speedup rel. to CCSDT		
0	0	65.036 CCSD	9.808 CCSD(2) _T	5.595 CR-CC(2,3)	~300		
30,000	4	8.065	0.858	0.454	90		
40,000	10	4.408	0.330	0.093	30		
50,000	23	2.208	0.125	0.002	10		
œ	100		-199.253022 E _l	h	1		
Errors relative to CCSDT CCSD: 65.036 mE _h CCSD(T): –27.209 mE _h							

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017)]

RECOVERING CCSDT ENERGETICS FOR AUTOMERIZATION OF CYCLOBUTADIENE/cc-pVDZ MONTE CARLO APPROACH = *i***-FCIQMC/***i***-CISDT-MC (\Delta \tau = 0.0001 \text{ a.u.}, n_a = 3)**

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017); in preparation]

RECOVERING CCSDT ENERGETICS FOR AUTOMERIZATION OF CYCLOBUTADIENE/cc-pVDZ MONTE CARLO APPROACH = *i*-FCIQMC/*i*-CISDT-MC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

Errors relative to CCSDT

MC Iter.	% of Triples	$\mathrm{CC}(\boldsymbol{P};\boldsymbol{Q})_{\mathrm{MP}}$	$CC(P;Q)_{EN}$ (kcal/mol	Total Wall Time (hrs)		
	in <i>P</i> space	(kcal/mol		MC	CC(<i>P</i> ; <i>Q</i>)	Total
0	0/0	9.6 CCSD(2) _T	8.7 CR-CC(2,3)	0/0	0.4/0.4	0.4/0.4
40,000	15-22/14-18	1.5/3.5	1.7/3.5	1.0/0.3	1.9/1.4	2.9/1.7
50,000	31-41/26-34	0.5/1.1	0.6/1.2	3.1/0.7	5.9/4.3	9.0/5.0
60,000	51-61/43-51	0.0/0.8	0.1/0.9	11.6/1.4	13.6/9.8	25.2/11.2
œ	100	7.6 kc	al/mol		41.05	

Errors relative to CCSDT CCSD: 13.3 kcal/mol CCSD(T): 8.2 kcal/mol

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017); in preparation]

[J.E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017); in preparation]

RECOVERING CCSDTQ ENERGETICS FOR H₂O/cc-pVDZ MONTE CARLO APPROACH = *i*-FCIQMC ($\Delta \tau$ = 0.0001 a.u., n_a = 3)

J.E. Deustua, J. S Piecuch, in prepa	Shen, and P. aration FCIQMC- CC(P)- $CC(P;Q)_{E}$	15 15 10 10 10 10 10 10 10 10 10 10	(a) 40 $\frac{100}{20}$ $\frac{100}{10}$ $\frac{100}{10}$ $\frac{100}{10}$	$R = 3R_{e}$
R = 3R	2	Iterations (>	<10 ³)	Iterations (×10 ³)
MC Iter.	% of Triples/Quads	$CC(P) (mE_h)$	$\mathrm{CC}(P;Q)_{\mathrm{MP}}$ (mE	$C_{\rm h}$ CC($P;Q$) _{EN} (mE _h)
0	0/0	15.582 CCSD	-28.302 CCSD(2	(-35.823 CR-CC(2,3))
10,000	3/1	10.165	-2.198	-3.682
20,000	5/1	4.282	-0.091	-0.469
40,000	13/3	0.969	0.170	0.085
80,000	36/16	0.030	0.015	0.013
œ	100/100		-75.916679 E ₁	1
Errors r	elative to FCI:	CCSD 45.638 CCSD(T) -23.596	mE _h CCSD mE _h CCSD	T –40.126 mE _h TQ –4.733 mE _h

SUMMARY

❑ By combining the stochastic CIQMC and CCMC methodologies with the deterministic CC(*P*;*Q*) framework one can recover high-level CC energetics based on the information extracted from the early stages of CIQMC or CCMC propagations, even when electronic quasidegeneracies and higher-than-pair clusters become substantial.

SUMMARY

By combining the stochastic CIQMC and CCMC methodologies with the deterministic CC(*P*;*Q*) framework one can recover high-level CC energetics based on the information extracted from the early stages of CIQMC or CCMC propagations, even when electronic quasidegeneracies and higher-than-pair clusters become substantial.

□ Paraphrasing the title of the original FCIQMC paper,

THE JOURNAL OF CHEMICAL PHYSICS 131, 054106 (2009)

Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space

George H. Booth,¹ Alex J. W. Thom,^{1,2} and Ali Alavi^{1,a)} ¹Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom ²Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA

(Received 15 May 2009; accepted 13 July 2009; published online 4 August 2009)

the stochastic CC(P;Q) formalism is a "game of life, death, and annihilation," but based on our results one may avoid playing much of it and yet know the outcome.

Citing the referee, who reviewed our paper submitted to *Physical Review Letters*:

"This is the first work that I've seen where <u>stochastic methods are used to</u> <u>determine what is important, and then deterministic methods are used to</u> <u>solve for the amplitudes of what is important</u>. In this sense, the method is completely original and **OPENS A FULL NEW RESEARCH PARADIGM**. Just because of this, I think it should be published in PRL."

WHAT IS NEXT?

Higher-order CC methods, excited states, corrections to FCI, and more

-0.503

0.080

0.308

-0.400

-76.241860 (FCI)

80

20

40 60 80 100 120 140 160 Iterations $(\times 10^3)$

130,000

140,000

150,000

160,000

 ∞

0.086

0.098

-0.055

0.078

[J.E. Deustua, I. Magoulas, J. Shen, and P. Piecuch, J. Chem. Phys., submitted (2018)]

-76.072348 (FCI)

-0.720

0.497

0.990

-1.002

-1.166

-0.666

-0.620

-0.434

-75.951665 (FCI)

3.107

1.981

1.630

1.328

-0.020

-0.084

-0.156

-0.059

THANK YOU

Emiliano Deustua Jun Shen

Ilias Magoulas

"Algebraic and Diagrammatic Methods for Many-Fermion Systems" https://pages.wustl.edu/ppiecuch/course-videos Search for Chem 580 in YouTube

Search for Chem 580

